https://evenements.uqam.ca

http://www.uqam.ca/|logo_uqam_couleur-blanc.svg|UQAM, Université du Québec à Montréal|38



UQÀM|uqam|http://www.uqam.ca/

Calendrier des événements


Recherche


evenements@uqam.ca


Séminaire au DIC: «Généralisation à partir de peu d'exemples à l'aide du méta-apprentissage»

Voici l’annonce du 8e séminaire au DIC pour la session AUTOMNE 2017  

Titre : Généralisation à partir de peu d'exemples à l'aide du méta-apprentissage

Hugo LAROCHELLE

Jeudi le 23 novembre 2017

10h30

Local SH-2620

Résumé

La majorité des progrès récents sur de nombreuses tâches d'IA ont été rendus possible grâce à la disponibilité de grandes quantités de données étiquetées. Pourtant, les humains sont capables d'apprendre des concepts à partir d'une poignée d'exemples. Le méta-apprentissage est un cadre très prometteur pour aborder ce problème de la généralisation à partir de petites quantités de données ('few-shot learning'). Dans ce cadre, le modèle à entraîner est lui-même un algorithme d'apprentissage: il prend en entrée un ensemble d'entraînement et retourne en sortie un classificateur. Pour la généralisation à partir de peu d'exemples, le modèle est (méta-)entraîné directement à produire des classificateurs ayant une bonne performance de généralisation pour des problèmes ayant très peu de données étiquetées. Dans cette présentation, je vais passer en revue la recherche récente ayant permis des progrès excitants sur ce sujet.

Biographie

Hugo Larochelle est chercheur et responsable de l'équipe Google Brain à Montréal, ainsi que Professeur Associé aux Universités de Montréal et de Sherbrooke. Précédemment, il a co-fondé la compagnie Whetlab, acquise en 2015 par Twitter, où Hugo a par la suite été chercheur dans le groupe Twitter Cortex. De 2009 à 2011, il a été chercheur postdoctoral dans le groupe d'apprentissage automatique de l'Université de Toronto, sous la direction du Professeur Geoffrey Hinton. Il a obtenu son doctorat à l'Université de Montréal, sous la direction du Professeur Yoshua Bengio. Il a reçu deux Google Faculty Awards, est éditeur associé pour la revue scientifique IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), est membre du comité éditorial du Journal of Artificial Intelligence Research (JAIR), et organisateur de la International Conference on Learning Representations (ICLR) de 2015, 2016 et 2017. Finalement, Hugo a publié gratuitement, sur YouTube, plusieurs cours sur l'intelligence artificielle et l'apprentissage automatique, incluant un cours populaire sur l'apprentissage profond (deep learning) et les réseaux de neurones.

Séminaire au DIC: «Généralisation à partir de peu d'exemples à l'aide du méta-apprentissage»

Date / heure

 à 

Lieu

SH-2620
200, rue Sherbrooke Ouest
Montréal (QC) Canada  H2X 3P2

Prix

Gratuit

Contact

Mylène Dagenais
Site Web

Sauvegarder

  • Google Agenda
  • Yahoo
  • iCal
  • Imprimer
Consulté 4 fois   ·   Modifier
Retour en haut de page