Séminaire Cirget : «Relative genus bounds in indefinite 4-manifolds » par Marco Marengon

Relative genus bounds in indefinite 4-manifolds 

Conférencier: Marco Marengon, Max Planck Institute for Mathematics 

Résumé / Abstract:Given a closed 4-manifold X with an indefinite intersection form, we consider smoothly embedded surfaces in X-int(B^4), with boundary a given knot K in the 3-sphere. We give several methods to bound the genus of such surfaces in a fixed homology class. Our techniques include adjunction inequalities from Heegaard Floer homology and the Bauer-Furuta invariants, and the 10/8 theorem.In particular, we present obstructions to a knot being H-slice (that is, bounding a null-homologous disc) in a 4-manifold and show that the set of H-slice knots can detect exotic smooth structures on closed 4-manifolds.This is joint work with Ciprian Manolescu and Lisa Piccirillo.  

Le lien pour se connecter est: https://uqam.zoom.us/j/98999725241 

clockCreated with Sketch.Date / heure

vendredi 9 avril 2021
11 h à 12 h

pinCreated with Sketch.Lieu

UQAM - En ligne

personCreated with Sketch.Renseignements