• Séminaire

Séminaire du Cirget: «Multiple zeta values in deformation quantization»

Conférencier: Brent Pym, McGill 

Résumé/Abstract: A famous 1997 formula of Kontsevich gives a universal solution to the "deformation quantization" problem in mathematical physics: starting from any Poisson manifold (the classical phase space), it produces a noncommutative algebra of quantum observables by deforming the ordinary multiplication of functions. The formula is an example of a Feynman expansion, involving an infinite sum over graphs, weighted by volume integrals on the moduli space of marked holomorphic disks. The precise values of these integrals are currently unknown. I will describe recent joint work with Banks and Panzer, in which we develop a theory of integration on these moduli spaces via suitable sheaves of polylogarithms, and use it to prove that Kontsevich's integrals evaluate to integer-linear combinations of special transcendental constants called multiple zeta values, yielding the first algorithm for their calculation. 

clockCreated with Sketch.Date / heure

vendredi 15 mars 2019
11 h à 12 h

pinCreated with Sketch.Lieu

UQAM - Pavillon Président-Kennedy (PK)
201, avenue du Président-Kennedy
Montréal (QC)

personCreated with Sketch.Renseignements


  • Recherche
  • Mathématiques


  • Département de mathématiques
  • Centre interuniversitaire de recherches en géométrie et topologie (CIRGET)