Boundedness results for families of non-canonically polarized varieties
Conférencier : Behrouz Taji (UNSW, Sydney)
Résumé : Thanks to Faltings, Arakelov and Parshin’s solution to Mordell’s conjecture we know that smooth complex projective curves of genus at least equal to 2 have finite number of rational points. A key input in the proof of this fundamental result is the boundedness of families of smooth projective curves of a fixed genus (greater than 1) over a fixed base scheme. The latter was generalized by the combined spectacular results of Kovács-Lieblich and Bedulev-Viehweg to higher dimensional analogues of such curves; the so-called canonically polarized projective manifolds. In this talk I will discuss our recent extension of this boundedness result to the case of families of varieties with semiample canonical bundle (for example Calabi-Yaus). This is based on joint work with Kenneth Ascher (UC Irvine).
Lien Zoom : https://uqam.zoom.us/j/98999725241
Cette conférence est donnée dans le cadre de la série de conférences mensuelles « On the Geometry of the Cotangent Bundle and Hyperbolicity » de l'IMSA: https://www.imsa.miami.edu/events/2024-fall-emphasis/geometry-hyper/index.html
Commanditaires : CIRGET/UQAM, IMSA (Univ. de Miami), IMPA (Rio de Janeiro, Brésil), Univ. de Loraine (Nancy, France) et UC Chile (Santiago, Chile)

Date / heure
Lieu
Montréal (QC)