Séminaire au DIC: «Algorithmes de Deep Learning flous causaux» par Usef Faghihi
Séminaire ayant lieu dans le cadre du doctorat en informatique cognitive, en collaboration avec le centre de recherche CRIA et l'ISC
Usef FAGHIHI
Jeudi le 9 novembre 2023 à 10h30
PK-5115 (aussi possible d'y assister à distance, pour ce faire, vous devez vous inscrire ici)
Titre : Algorithmes de Deep Learning flous causaux
Résumé
Je donnerai un bref aperçu de l'inférence causale et de la manière dont les règles de la logique floue peuvent améliorer le raisonnement causal (Faghihi, Robert, Poirier & Barkaoui, 2020). Ensuite, j'expliquerai comment nous avons intégré des règles de logique floue avec des algorithmes d'apprentissage profond, tels que l'architecture de transformateur Big Bird (Zaheer et al., 2020). Je montrerai comment notre modèle de causalité d'apprentissage profond flou a surpassé ChatGPT sur différentes bases de données dans des tâches de raisonnement (Kalantarpour, Faghihi, Khelifi & Roucaut, 2023). Je présenterai également quelques applications de notre modèle dans des domaines tels que la santé et l'industrie. Enfin, si le temps le permet, je présenterai deux éléments essentiels de notre modèle de raisonnement causal que nous avons récemment développés : l'Effet Causal Variationnel Facile Probabiliste (PEACE) et l'Effet Causal Variationnel Probabiliste (PACE) (Faghihi & Saki, 2023).
Biographie
Usef FAGHIHI est professeur adjoint à l'Université du Québec à Trois-Rivières. Auparavant, Usef était professeur à l'Université d'Indianapolis aux États-Unis. Usef a obtenu son doctorat en Informatique Cognitive à l'UQAM. Il est ensuite allé à Memphis, aux États-Unis, pour effectuer un post-doctorat avec le professeur Stan Franklin, l'un des pionniers de l'intelligence artificielle. Ses centres d'intérêt en recherche sont les architectures cognitives et leur intégration avec les algorithmes d'apprentissage profond.
References
Reasoning, an Alternative to Pearl’s Causal Reasoning. In Proceedings of AAAI-FLAIRS 2020. North-Miami-Beach (Florida).
Faghihi, U., & Saki, A. (2023). Probabilistic Variational Causal Effect as A new Theory for Causal Reasoning. arXiv preprint arXiv:2208.06269.
Kalantarpour, C., Faghihi, U., Khelifi, E., & Roucaut, F.-X. (2023). Clinical Grade Prediction of Therapeutic Dosage for Electroconvulsive Therapy (ECT) Based on Patient’s Pre-Ictal EEG Using Fuzzy Causal Transformers. Paper presented at the International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023, Tenerife, Canary Islands, Spain.
Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., . . . Yang, L. (2020). Big bird: Transformers for longer sequences. Advances in neural information processing systems, 33, 17283-17297.

Date / heure
Lieu
Montréal (QC)
Prix
Renseignements
- Mylène Dagenais
- dic@uqam.ca
- https://www.dic.uqam.ca